Geometric Isomorphism and Minimum Aberration for Factorial Designs with Quantitative Factors

نویسنده

  • Kenny Q. Ye
چکیده

Factorial designs have broad applications in agricultural, engineering and scientific studies. In constructing and studying properties of factorial designs, traditional design theory treats all factors as nominal. However, this is not appropriate for experiments that involve quantitative factors. For designs with quantitative factors, level permutation of one or more factors in a design matrix could result in different geometric structures, and, thus, different design properties. In this paper indicator functions are introduced to represent factorial designs. A polynomial form of indicator functions is used to characterize the geometric structure of those designs. Geometric isomorphism is defined for classifying designs with quantitative factors. Based on indicator functions, a new aberration criteria is proposed and some minimum aberration designs are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic Construction of Efficient Fractional Factorial Designs With Large Run Sizes

Fractional factorial designs are widely used in practice and typically chosen according to the minimum aberration criterion. A sequential algorithm is developed for constructing efficient fractional factorial designs. A construction procedure is proposed that only allows a design to be constructed from its minimum aberration projection in the sequential build-up process. To efficiently identify...

متن کامل

Generalized Resolution and Minimum Aberration for Nonregular Fractional Factorial Designs

Seeking the optimal design with a given number of runs is a main problem in fractional factorial designs(FFDs). Resolution of a design is the most widely usage criterion, which is introduced by Box and Hunter(1961), used to be employed to regular FFDs. The resolution criterion is extended to non-regular FFG, called the generalized resolution criterion. This criterion is providing the idea of ge...

متن کامل

A Note on Dominating Fractional Factorial Two-Level Designs With Clear Two-Factor Interactions

This note builds on results from Wu, Mee and Tang‘s (2012) article (henceforth WMT) on admissible fractional factorial two-level designs, specifically concentrating on the “dominating designs” that have been introduced but not further pursued in WMT. WMT’s work has been used for increasing the efficiency of the author’s graph-based algorithm for creation of minimum aberration designs that keep ...

متن کامل

Minimum Aberration Designs for Mixed Factorials in Terms of Complementary Sets

Minimum aberration designs are obtained for two types of mixed-level fractional factorial: (i) (s) × s factorial, and (ii) (s1) × (s2) × s factorial, where s is any prime or prime power, and r, r1, r2 and n are positive integers. Projective geometric tools are employed to find the wordlength pattern of a given design in terms of that of its complementary set. Many useful designs are found

متن کامل

Fractional Factorial Split-Plot Designs with Minimum Aberration and Maximum Estimation Capacity

Considering general prime or prime powered factorials, we give a nite projective geometric formulation for regular fractional factorial split-plot designs. This provides a uniied framework for such designs and facilitates their systematic study under the criteria of minimum aberration and minimum secondary aberration; the latter criterion is introduced to achieve ner discrimination. We investig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004